

Continuous bulk solids measurement

Suitable for flow rates up to15,000 t/hr

Type BEM – designed modularly, suit-

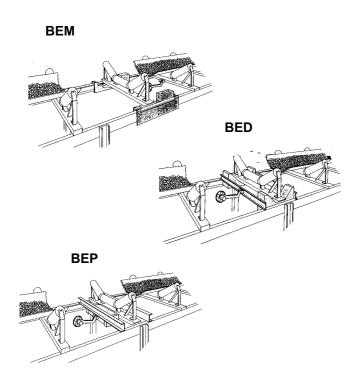
Types BEP/BED – weighing platforms,

in belt conveyor systems

Accuracy up to ± 0.5 %

able for any belt width

Also legal-for-trade-version


Simple and quick installation

suitable for IEC belt widths

Suitable for use in ATEX

explosion-zones

MULTIBELT[®] Single-Idler Belt Weighers

Application

Single-Idler Belt Weighers are used for continuous acquisition of flow rates and totalized amounts. They are especially designed for integration into continuously operating belt conveyors enabling accu-racies of up to $\pm 0.5\%$ to be achieved. They can be employed for a whole variety of tasks:

- Throughput and consumption measurement in production plants
- Accountability of stored and retrieved amounts
- Load limit alarm
- Batching, in load-out stations
- Legal-for-trade weighing
- Prefeeder control.

Their rugged design ensures a highdegree of reliability and availability.

We have the right Belt Weigher for every Belt Conveyor. For Multi-Idler Belt Weighers designed for higher accuracies, see separate Spec Sheet BV-D2050.

Construction

The standard single-idler belt weigher comprises:

.

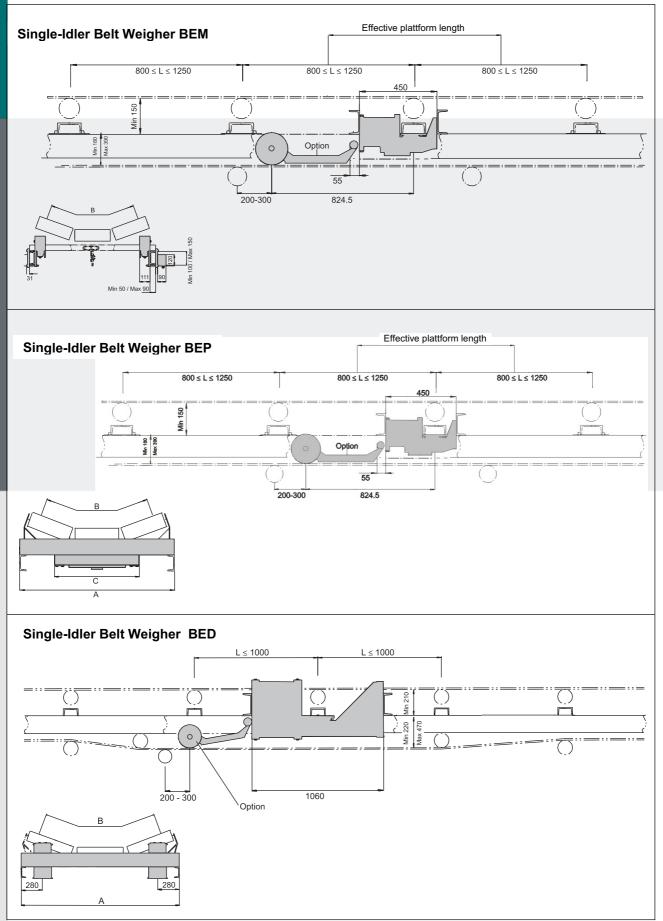
.

- Weighing module or platform for accommodating user's idler set
- Overload-protected load cell(s)with high degree of protection
- Cable junction box for connection of sensors, and
- All fixing elements required for mounting.

For speed measurement, various speed transducers e.g. friction wheel tachometers, are available as options.

Operating Principle

Belt Weighers are used to measure continuous material flows of varying amounts.


Load cells acquire the weight of load on particular belt sections. A speed transducer measures the belt speed.

The product of these two variables is the current flow rate. Integration of flow rate determines the totalized amount of material.

If belt weighers are not equipped with speed measurement system, belt speed is not acquired. In the secases, weighing electronics use the constant speed value set by parameter.

However, this method can adversely affect the accuracy.

Dimensions [mm]

Dimensions [mm]

MULTIBELT®	Dimensions [mm]										
BEM	Measure B Belt width	400	500	650	800	1000	1200	1400			
BEP	Measure A	700	800	950	1150	1350	1600	1800			
	Measure B Belt width	400	500	650	800	1000	1200	1400			
	Measure C	440	440	440	740	740	740	740			
BED	Measure A								2050	2250	2500
	Measure B Belt width								1600	1800	2000

Technical Data

MULTIBELT [®] Single-IdlerBelt Weighers	Accuracy without speed measurement system only achievable at constant speed	Flow rate	Weight	Belt Speedt	Belt Rise	
BEM	\pm 1,0 % of nominal flow rate	to ca. 4.000 t/h	≈ 60 kg		~ 20° (No relative material movement)	
BEP	\pm 0,5 % of nominal flow rate	to ca.	≈ 100 kg	to ca. 6 m/s		
DEF	± 1,0 % of actual flow rate	6.000 t/h				
BED	± 0,5 % of nominal flow rate	to ca. 15.000 t/h	≈ 300 kg			
	± 1,0 % of actual flow rate	10.000 011				

Accuracy

Specified accuracies refer either to nominal (maximum) flow rate or to the corresponding actual flow rate in the range of 20 to - 100 %.

Specified accuracies assume that the variant is installed in a suitable belt conveyor and that the measuring station is installed and calibrated in accordance with our installation and calibration instructions.

For optimum planning-in of your belt weigher(s), see Spec Sheet F9151e 'Recommendations for ensure proper functioning and high accuracy'.

Special Requirements

Should you have specialrequirements, e.g.

- Legal-for-trade variants
- Belt speed out of specified range
- Meter for varying belt angle
- Prefeeder control
- Flow rates exceeding 15,000 t/hr
- Higher accuracies
- Special belt widths
- Special belt conveyors,

please let us know.

Ordering Data

For us to be able to handle your order smoothly and quickly, please let us have the data below in addition to the ordering number:

•	Belt width	[mm]
•	Flow rate	[t/h]
•	Belt rise	[°]
•	Belt speed	[m/s]
•	Accuracy Nominal flow rate Actual flow rate	[%] ()
	/ lotatal non rate	()

Single-Idler Belt Weigher Variants

BEM 400 - 1400

Belt weigher of modular design, belt widths from 400 - 1400 mm

BEP 400 - 1400

Belt weigher with weighing platform, IEC-belt widths from 400 - 1400 mm

BED 1600 - 2000

Belt weigher with weighing platform, IEC-belt widths from 1600 - 2000 mm

Options

 $\ensuremath{\textbf{FGA}}$ 24 $\ensuremath{\textbf{A}}$ – Speed measurement system, Namur switch with perforated disc

FGA 20 RSE - Speed measurement system; friction wheel with rocker and support

FGA 20 RSE-VA - Speed measurement system for belt speeds uo to 3.5 m/s; friction wheel with rocker and support in stainless steel designg

FGA 30 R - Speed measurement systemfor belt speeds up to 3.5 m/s; friction wheel, enclosed casing, rocker and support

FGA 53 K - Speed measurement system for belt speeds from 3.5 m/s onward, with coupling for connection to shaft end